Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Microchemical Journal ; : 108933, 2023.
Article in English | ScienceDirect | ID: covidwho-20230746

ABSTRACT

Interleukin-10 (IL-10) is an anti-inflammatory cytokine that is secreted in response to an acute phase inflammation in patients who are suffering from heart failure (HF). The aim of this work was to develop an electrochemical biosensor for determining salivary IL-10 levels. Biofunctionalization strategy was improved through the use of copper-free click chemistry for the developed sensor due to its advantages, leading to high quantitative yields of stable triazoles, rapid reaction, no cytotoxic Cu(I) catalyst requirement, and high specificity of cyclooctynes toward azides. The approach involved in binding of dibenzocyclooctyne acid (DBCO-COOH) to thiol-azide assembled gold microelectrodes, later capturing the monoclonal IL-10 antibody (IL-10 mAb), and ultimately allowing direct detection of IL-10 antigen. Fourier transform infrared spectroscopy (FTIR) and nanoplotter associated with fluorescence microscopy methods have been employed to analyze and prove the biofunctionalization of the gold microelectrodes. Moreover, the electrochemical impedance spectroscopy (EIS) technique was used for detecting IL-10 antigen. The developed immunosensor showed a semi-logarithmic linear range, from 0.1 pg/mL to 5 pg/mL with R2 = 0.9815 and a limit of quantitation (LOQ) of 0.1 pg/mL with relative standard deviation (RSD) of 10.67%. The specificity of the immunosensor was evaluated using an inflammatory cytokine, and none of it generated detectable EIS signals. Finally, the successful analysis of saliva samples from a healthy volunteer without Coronavirus (COVID-19) infection demonstrated the usefulness of the developed immunosensor.

2.
Journal of Electroanalytical Chemistry ; : 116953, 2022.
Article in English | ScienceDirect | ID: covidwho-2095616

ABSTRACT

Cytokine storms are known as the uncontrolled overproduction of inflammatory cytokines that can be produced by a variety of viral or non-infectious disorders and inflict significant damage to many organs. Interleukin-10 (IL-10) is an anti-inflammatory cytokine, and rapid detection of its levels in serum and saliva is important for many diseases, including severe COVID-19 patients. In this study, Polystyrene (PS) fibers were electrospun over a gold electrode and modified by air plasma to allow their further decoration with polyamidoamine (PAMAM) dendritic polymer for providing many active sites on the fiber surface. The fabricated three-dimensional (3-D) architecture was employed as a platform in an impedimetric immunosensor for the quantitative detection of interleukin-10 cytokine (AgIL-10). Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle measurements, fluorescence microscopy, UV–vis spectroscopy, and electrochemical methods including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterized the proposed electrospun fiber-based platform and electrochemical immunosensor. The PAMAM properties increased not only the amperometric response to the ferro/ferri cyanide redox probe, of the modified gold electrode but also the active surface area available for covalently binding of anti-IL-10 capture antibody, resulting in the sensitive detection of AgIL-10 in the concentration range of (1-50 pg/mL) in phosphate buffer saline (PBS) with a limit of detection (LOD) of 1 pg/mL. The immunosensor's performance in detecting AgIL-10 in artificial saliva (AS) as a complex medium was likewise satisfactory. This immunosensor provides a new opportunity for clinical immunoassays thanks to its great sensitivity,selectivity, andstability.

3.
Talanta ; 241: 123243, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1633997

ABSTRACT

Viral diseases are the primary source of death, making a worldwide influence on healthcare, social, and economic development. Thus, diagnosis is the vital approach to the main aim of virus control and elimination. On the other hand, the prompt advancement of nanotechnology in the field of medicine possesses the probability of being beneficial to diagnose infections normally in labs as well as specifically. Nanoparticles are efficiently in use to make novel strategies because of permitting analysis at cellular in addition to the molecular scale. Henceforth, they assist towards pronounced progress concerning molecular analysis at the nanoscale. In recent times, magnetic nanoparticles conjugated through covalent bonds to bioanalytes for instance peptides, antibodies, nucleic acids, plus proteins are established like nanoprobes aimed at molecular recognition. These modified magnetic nanoparticles could offer a simple fast approach for extraction, purification, enrichment/concentration, besides viruses' recognition precisely also specifically. In consideration of the above, herein insight and outlook into the limitations of conventional methods and numerous roles played by magnetic nanoparticles to extract, purify, concentrate, and additionally in developing a diagnostic regime for viral outbreaks to combat viruses especially the ongoing novel coronavirus (COVID-19).


Subject(s)
COVID-19 , Viruses , Humans , Magnetic Phenomena , Magnetics , SARS-CoV-2 , Viruses/genetics
4.
J Pharm Biomed Anal ; 206: 114392, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1433569

ABSTRACT

The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL-1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL-1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Antibodies, Immobilized , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Microelectrodes , Polymers , Pyrroles , SARS-CoV-2
5.
J Electroanal Chem (Lausanne) ; 895: 115422, 2021 Aug 15.
Article in English | MEDLINE | ID: covidwho-1253180

ABSTRACT

Due the current pandemic of COVID-19, an urgent need is required for serious medical treatments of a huge number of patients. The world health organization (WHO) approved Favipiravir (FAV) as a medication for patients infected with corona virus. In the current study, we report the first simple electrochemical, greatly sensitive sensor using MnO2-rGO nanocomposite for the accurate determination of Favipiravir (FAV). The developed sensor showed a high improvement in the electrochemical oxidation of FAV comparing to the unmodified screen-printed electrode (SPE). The suggested platform constituents and the electrochemical measurements parameters were studied. Under optimal experimental parameters, a current response to the concentration change of FAV was found to be in the linear range of 1.0 × 10-8-5.5 × 10-5 M at pH 7.0 with a limit of detection 0.11 µM and a quantification limit of 0.33 µM. The developed platform was confirmed by the precise analysis of FAV in real samples including dosage form and plasma. The developed platform can be applied in different fields of industry quality control and clinical analysis laboratories for the FAV determination.

SELECTION OF CITATIONS
SEARCH DETAIL